
Watching You Watch: The Tracking Ecosystem of Over-the-Top
TV Streaming Devices

Hooman Mohajeri Moghaddam, Gunes Acar, Ben Burgess, Arunesh Mathur, Danny Yuxing Huang,
Nick Feamster∗, Edward W. Felten, Prateek Mittal, Arvind Narayanan

Princeton University and University of Chicago∗

ABSTRACT
The number of Internet-connected TV devices has grown signifi-
cantly in recent years, especially Over-the-Top (“OTT”) streaming
devices, such as Roku TV and Amazon Fire TV. OTT devices offer
an alternative to multi-channel television subscription services,
and are often monetized through behavioral advertising. To shed
light on the privacy practices of such platforms, we developed a
system that can automatically download OTT apps (also known as
channels), and interact with them while intercepting the network
traffic and performing best-effort TLS interception. We used this
smart crawler to visit more than 2,000 channels on two popular
OTT platforms, namely Roku and Amazon Fire TV. Our results
show that tracking is pervasive on both OTT platforms, with traffic
to known trackers present on 69% of Roku channels and 89% of
Amazon Fire TV channels. We also discover widespread practice of
collecting and transmitting unique identifiers, such as device IDs,
serial numbers, WiFi MAC addresses and SSIDs, at times over un-
encrypted connections. Finally, we show that the countermeasures
available on these devices, such as limiting ad tracking options and
adblocking, are practically ineffective. Based on our findings, we
make recommendations for researchers, regulators, policy makers,
and platform/app developers.

CCS CONCEPTS
• Security and privacy→ Privacy protections.

KEYWORDS
privacy; OTT; third-party tracking; measurement; Internet TV;
automation

1 INTRODUCTION
The number of Internet connected TV users has increased steadily
over the past few years and an estimated 65.3% of Internet users
in the United States (US)—close to 182.6 million people—used an
Internet connected TV device in 2018 [20]. In fact, “cord-cutting”
patter, where users replace their traditional cable TV subscription
with content delivered through Internet connected TV platforms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354198

to avoid long-term multi-channel subscription commitments, has
been a very popular trend in recent years [77].

However, many Internet-connected TVs introduce privacy risks.
These devices often have access to sensitive user data, e.g., micro-
phone input, viewing history, and personal information. Not only
could such data be exposed to developers who build applications
(hereafter, channels) for these devices, but it could also be used
for behavioral advertising. For example, the Federal Trade Com-
mission (FTC) recently fined Vizio—a smart TV manufacturer—for
collecting individual users’ demographics and viewing histories for
targeting advertising without consent [60]. Moreover, for manufac-
turers such as Roku, advertising has surpassed device sales as the
primary source of income [38, 52, 56, 73]. In fact, we have found
evidence of trackers collecting user identifying information and
viewing behavior in Roku’s network traffic, as shown in Figure 1.

In this paper, we examine the advertising and tracking ecosystem
of Over-the-Top (“OTT”) streaming devices, which deliver Internet-
based video content to traditional TVs/display devices. OTT devices
refer to a family of services and devices that either directly connect
to a TV (e.g., streaming sticks and boxes) or enable functionality
within a TV (e.g., smart TVs) to facilitate the delivery of Internet-
based video content [25].

Specifically, we are interested in identifying endpoints that OTT
channels contact to serve advertisements and/or track users; the
entities that these endpoints are associated with; what information
OTT channels send to them; and how they potentially track users.
To this end, we build an automated system that collects channel
information from OTT channel stores, loads individual channels
on an OTT device, and attempts to play a video clip and trigger a
video ad while capturing network traffic. In particular, we study
two of the most popular OTT streaming devices in the market:
the Roku Channel Store [67] and the Amazon Fire TV channel
store [3]. We examine the network traffic of 1,000 channels from
the Roku Channel Store and 1,000 channels from the Amazon Fire
TV channel store. Automated analysis of these channels at scale
presents two key challenges that previous studies examining third-
party tracking at scale on the web [23] and mobile devices [59]
have not encountered:

Challenge 1: Automated Interaction: Unlike web browsers
and mobile devices, where visiting, launching and interacting with
applications is enabled by existing automation software (e.g., Sele-
nium [71]), to the best of our knowledge there is no such solution
for OTT devices. Even though many OTT devices have a remote
control API, the interaction is virtually limited to sending com-
mands and coarse-grained feedback, such as the current channel
viewed. The lack of fine-grained feedback, such as what text is
shown on the TV screen or whether a video clip or video advertise-
ment (ad) is being played on the TV, makes it difficult to execute

1

https://doi.org/10.1145/3319535.3354198

HTTP outbound to 192.35.249.124:80(DNS: search.spotxchange.com)(channel name: asiancrush)

GET./vast/3.0/146141?VPI[]=MP4&VPI[]=ROKU&app[name]=asiancrush&app[domain]=asiancrush.com&
app[bundle]=com.dmr.asiancrush&player_width=1280&player_height=720&device[devicetype]=7&de
vice[make]=Roku&device[model]=Roku&device[ifa]=39fc6352-aede-53f6-b3e3-58bf562bd074&ip_add
r=128.112.139.195&cb=1557313464653&custom[movie_title]=So%20Young%202%3A%20Never%20Gone&cu
stom[content_id]=3417&token[device_id]=39fc6352-aede-53f6-b3e3-58bf562bd074&token[connecti
on]=wifi&token[category_ID]=241&token[category_Title]=Romance&device[dnt]=0&max_bitrate=70
00 HTTP/1.1
Host: search.spotxchange.com
User-Agent: Roku/DVP-9.0 (519.00E04142A)
Accept: */*

Figure 1: AsianCrush channel on Roku sends device ID and video title to online video advertising platform spotxchange.com.

the complex interaction required to play videos on channels. To
mitigate this lack of feedback, we build a system that uses audio
and pixel content to infer the state of video playback on the TV, as
we will explain in detail in Section 3.

Challenge 2: Intercepting Traffic: Unlike web browsers and
mobile devices which expose capabilities to install root certificates
to intercept HTTPS traffic, OTT streaming devices are largely closed
and proprietary, making it harder to intercept and analyze en-
crypted traffic. To this end, we modify mitmproxy to intercept
and decrypt HTTPS traffic via best-effort. Where possible, we de-
ploy our own TLS certificate to the device and use external toolkits
(e.g., Frida [29] for the Amazon Fire Stick TV) to bypass certificate
pinning.

Contributions:We make the following contributions:
• We conduct the first large-scale study of privacy practices
of OTT streaming channels. Using an automated crawler
that we developed in house, we crawled more than 2,000
channels and found widespread practices of tracking.

• We build the first system that can automate the interaction
of OTT channels and the interception of network activities.
We will open-source the system, which can be used by other
researchers to study similar OTT and smart TV platforms.

• We discover collection of persistent identifiers (such as WiFi
MAC addresses and SSIDs) for tracking, at times over un-
encrypted connections. We find connection to at least one
tracker on the traffic of 691 of the most popular 1,000 chan-
nels on Roku and 894 of the most popular channels on Ama-
zon Fire TV.

• Analyzing the local remote control APIs of the OTT devices,
we find a vulnerability that allows a malicious web script to
extract a Roku user’s location, retrieve installed channels, in-
stall new channels and access device identifiers. We reported
the vulnerability to the vendor, who has rolled out a fix.

2 RELATEDWORK AND BACKGROUND
In this section we review the related work, and we describe the
OTT streaming devices we studied in our work.

2.1 Related Work
Numerous studies have examined different aspects of online track-
ing, ranging from understanding how tracking works, what entities
engage in tracking, and the implications of tracking for consumer

privacy. In this section, we summarize the related literature and
place our study in context.

2.1.1 Web Tracking: Techniques and Measurement. Some of the ear-
liest studies of online tracking began examining the presence and
practices of third-party entities embedded on websites [36, 42, 63],
finding pervasive use of third-party cookies to track users across
websites. Successive studies discovered novel third-party tracking
techniques that are difficult to counter. For example, studies have
shown how users can be tracked on the Web using Flash cook-
ies [74], browser fingerprinting [18], canvas fingerprinting [45],
performance characteristics [44], font metrics [27] and installed
browser extensions [31, 76].

While these studies illuminated several types of tracking mech-
anisms, only recently have researchers begun measuring and ex-
amining their behavior at scale. For example, Nikiforakis, et al.
measured the prevalence of third-party JavaScript on the Alexa
Top 10,000 websites, and identified new ways an adversary could
compromise websites such as by registering stale domains that
victim websites load scripts from [51]. In another instance, Libert
used an instrumented headless browser to study third-party track-
ing and discovered that websites that leak user data contact an
average of nine different third parties [39]. Finally, Acar et al. built
FPDetective [2] to measure the prevalence of various fingerprinting
techniques on the web over the Alexa Top 1 Million websites.

More recently, Englehardt and Narayanan designed and built
OpenWPM—an instrumented web crawler based on Selenium—
and used it to measure the prevalence of various kinds of browser
fingerprinting on the Alexa Top 1 Million pages [23], discovering
that a few large third parties are responsible formost tracking on the
web. Other studies using OpenWPM have shown how web tracking
exposes users to network surveillance by sending identifiers in
the clear [24], and how nearly 30% of all emails leak users’ email
addresses to third parties [22]. More recently, Das et al. [10] found
that several third parties in the Top 100K Alexa websites use sensor
APIs—such as motion, orientation proximity and light—available in
mobile browsers for tracking and analytics.

2.1.2 Mobile Tracking. Numerous studies have documented the
third-party entity landscape of mobile applications. Privacy im-
plications of mobile apps have been extensively studied in the
literature [21, 32, 61]. Xia et al. showed that up to 50% of the smart-
phone traffic can be attributed to users’ real names [82]. Reyes et

2

al. analyzed 5,855 popular free children’s apps and found wide-
spread violation of the Children’s Online Privacy Protection Act
(“COPPA") [62]. Other work explored ways to track users on mobile
platforms by fingerprinting smartphone configurations [37], acous-
tic components [11], sensors [12, 13, 48], battery readings [54], and
ambient light level [53]. Ren et al. presented ReCon [61], which
detects potential PII leaks by inspecting network traffic and allows
users to control dissemination. They ran a study with 92 partici-
pants tomeasure PII exposure on the 100most popular iOS, Android,
and Windows Phone apps.

2.1.3 Privacy and Security of Smart Devices. Analyzing 20 IoT de-
vices, Loi et al. proposed a systematicmethod to identify the security
and privacy issues of various IoT devices including home security,
energy management and entertainment devices [40]. Fernandes et
al. studied security of 499 SmartThings apps and 132 device handlers
on Samsung’s SmartThings platform and found security flaws in the
framework [26]. Wood et al. studied four medical devices and found
that one device occasionally sends sensitive health data in clear
text [81]. Acar et al. used DNS Rebinding [14] to gather sensitive
information and control IoT devices with local HTTP interfaces [1].
Finally, Malkin et al. [41] surveyed current and prospective smart
TV users regarding their privacy understanding and expectations
with regards to these platforms and concluded that there is very
little transparency and understanding of privacy practices on these
platforms.

2.2 Platforms and Channel Stores
We examined the advertising and tracking ecosystem of services
present on two of the most popular OTT streaming device families:
Roku andAmazon Fire TV. We specifically chose these two, since
together they account for 59% to 65% of the market share globally [8,
19, 20]. Both device families consist of various external devices that
users connect to displays (such as TVs) via HDMI. These devices
stream video content over the Internet through channels (like apps).
Users can download and install channels on their devices from the
Roku Channel Store [67] and the Amazon Fire TV channel store [3].

Roku streaming devices run a proprietary operating system de-
veloped by Roku, Inc. The Roku channels are packaged, signed and
encrypted to ensure confidentiality of the source code. Only Roku
devices have the ability to decrypt the channels. As a privacy op-
tion, Roku allows users to “Limit Ad Tracking” to disable identifiers
used for targeted advertising and Roku’s developers documentation
states that channels should not use the data collected from the
device to serve personalized advertisements when this option is
enabled [64].

Amazon Fire TV devices run a custom version of the Android
operating system. Amazon Fire TV channels are packaged in the
Android Application Package (APK) format, and—as with most An-
droid devices—developers can interact with the Fire TV devices us-
ing the Android Debug Bridge (adb) tool1. Similar to Roku, Amazon
allows users to “Disable Interest-based Ads” and limit behavioral
profiling and targeting [4].

We performed our crawls on both Roku and Amazon Fire TV
family of devices, more specifically using Roku Express [69] and the

1https://developer.android.com/studio/command-line/adb

Amazon Fire TV Stick [5] since these are the most popular and least
expensive options within each family. Note that while we crawled
the channels from the channel stores using these specific devices,
our crawler was built to be largely agnostic to the underlying device
type. In future work, researchers can replace a small portion of our
Roku- andAmazon-specific codewith APIs of other OTT platforms.

3 SMART CRAWLER AND DATA
COLLECTION

In this section, we describe our data collection pipeline: the list
of channels we crawled, and our crawler infrastructure. We also
discuss different settings and preferences we used for all the crawls
we performed in our study.

3.1 Compiling Channel Lists
We compiled a list of channels from the Roku and Amazon Fire TV
channel stores. We compiled these lists in May 2019.

3.1.1 Roku Channel Lists. Roku channels are organized by cate-
gory on the Roku Channel Store website, with each channel belong-
ing to only one category. To compile a list of channels, we extracted
all the channels within each category. Each category page on the
website (e.g., channelstore.roku.com/browse/movies-and-tv)
contains a list of channels in that category along with each chan-
nel’s metadata information—its ID, description, Roku’s internal
channel popularity ranking, and the identity of its developer—all of
which we recorded. This resulted in a list of 8,660 channels across
23 categories.

To keep our crawls tractable while analyzing channels that users
are more likely to encounter, we did not extract all the 8,660 chan-
nels. Instead, we created a new list, sorting the list of 8,660 channels
by rank and retaining the top 1,000 channels (Roku-Top1K). In
addition, to test various features of the OTT devices (e.g., privacy
controls), we created a list of 100 channels (Roku-Categories-
Top100) by selecting the top 10 channels by rank from the follow-
ing categories: “Movies & TV”, “Kids & Family”, “Sports” , “Fitness”,
“Religious”, “Food”, “Shopping”, “Educational”, “Special Interest”,
and “News & Weather”. We chose these categories since they con-
tained the most channels overall.

3.1.2 Amazon Fire TV Channel Lists. Like Roku, Amazon Fire TV
channels are organized as a list on the Amazon Fire TV channel
store website, with some channels belonging to multiple categories.
We recorded all the channels from this list, including each channel’s
metadata—its ID, description, Amazon Fire TV’s internal channel
popularity ranking, and the identity of its developer—resulting in a
list of 6,782 channels across 29 categories.

Aswith the Roku channel lists, we retained the top 1,000 channels
by rank (FireTV-Top1K) for crawling. In addition, we also created
a list of 100 channels (FireTV-CategoriesTop100) by selecting the
top 10 channels by rank from the following categories: “News &
Weather”, “Movies & TV”, “Sports”, “Lifestyle”, “Health & Fitness”,
“Food&Drink”, “Kids”, “Shopping”, and “Education”.We chose these
categories since they contained the most channels overall. Because
some of these channels belonged to multiple categories, this list
contained 86 channels in total.

3

Internet
Audio output

W
iF

i A
cc

es
s

Po

in
t

OTT Device
(e.g., Roku)

Desktop Machine

HDMI Capture
and Split Card

Video
output

Video
output

Video

output

TV Display

Ethernet

• Packet Capture
• DNS Capture
• Screenshots
• Audio recordings

Cr
aw

le
r

Co
m

m
an

ds

Store

Figure 2: Overview of our smart crawler.

3.2 Smart Crawler Infrastructure
3.2.1 Overview and Setup. Figure 2 illustrates our smart crawler
setup. Our crawler consists of four physical devices: a desktop ma-
chine, a TV display, an HDMI split and capture card, and the OTT
device. The desktop machine executes the crawler code, orches-
trates the crawl and stores the resulting data.

The desktop machine acts as a WiFi access point (AP) and its
wireless network interface is bridged to the Internet. The OTT
device connects to this AP, which allows us to capture the OTT
device’s network traffic. The OTT device outputs its video to both
a TV display and a desktop machine by means of an HDMI capture
card. The TV display allows us to visually inspect the crawler’s be-
havior and we use the screenshot captures on the desktop machine
to validate our findings visually and for further debugging. Finally,
the TV display’s audio output connects to the desktop machine’s
audio input, which we capture into files using arecord. Thus, the
desktop machine—and thus the crawler—receives both audio and
video signals emitted from the OTT device.

The crawler interacts with the OTT devices using their remote
control APIs. Roku and Amazon Fire TV expose their remote control
functionality via web APIs and adb respectively, both of which can
receive keystroke commands to interact with the device. For exam-
ple, “adb shell input keyevent 21” sends the “left” key to Ama-
zon Fire TV devices, and an HTTP GET request to “http://ROKU_
DEVICE_IP_ADDRESS:8060/keydown/left ” does the same for all
Roku devices.

The crawler uses a combination of such device commands to
launch and install channels starting from the home screen of each
OTT device. Operating one channel at a time from the list of chan-
nels, the crawl installs a channel, launches it, and interacts with it to
play video. Soon after launching the channel, the crawler captures
and attempts to decrypt various network and application level data.
Finally, the crawler uninstalls the channel to free space on the OTT
device.

The crawler’s channel installation process is platform specific.
On Roku, the crawler starts from the home page; visits the Roku
Channel Store; opens the channel’s page using its channel ID; and
presses “Install” to install the channel. On Amazon, we discovered
that delays in having channels appear on the device from the Ama-
zon Fire TV channel store made the crawl prohibitively long and
unrepeatable. Therefore, while compiling the list of channels to
crawl, we installed each channel, waited for it to appear on the
device, and then extracted the APK files from the device using adb.

For successive crawls, we installed the channels from the APK files
using adb as opposed to the channel store. The crawler then uses
adb commands to install the channel APK files, which we retrieve
from the Amazon Fire TV channel store ahead of running any
crawls.

3.2.2 Triggering Video Playback. While merely launching a chan-
nel might reveal initial insight into its advertising and tracking
ecosystem, triggering video playback and watching content, like
an actual user, provides a more thorough and complete view. While
our crawler can interact with channels using the OTT device’s
remote control APIs, triggering video playback in an automated
fashion is challenging because channels’ user interfaces vary widely.
Therefore, we developed our crawler to maximize the probability
of triggering video playback in channels.

To maximize the probability, we first analyzed how a human
would interact with a channel to play a video. We randomly se-
lected 100 channels from the Roku-Top1K list. For each channel, we
manually recorded the shortest sequence of keystrokes that leads
to video playback (e.g., the “Down” button followed by the “OK”
button). The three sequences that triggered video playback on the
most channels were: [OK, OK, OK], [Down, OK, OK] and [OK, OK,
Down, OK, Down, OK].

The crawler employs these three key sequences by first opening
a channel, executing one key sequence, and then checking the
audio output signal (as a proxy for video playback). The crawler
detects the audio signal by comparing the amplitude of the last five
seconds of audio to the noise, and then checking if the difference
between the two is greater than a certain threshold; we determined
this threshold through iterative testing. If the crawler does not
detect an audio signal, it assumes the key sequence did not work,
restarts the channel, and then proceeds to play the remaining key
sequences.

We tested the efficacy of our audio detection method by man-
ually labelling screenshots from a sample of 150 channels with
whether or not they achieved video playback. We compared this
“ground truth” to the crawler’s audio detection log to determine
the accuracy, noting false positives and false negatives. Overall,
the audio detection method was accurate in 144 of the 150 (96%)
channels. We discovered only six cases of false positives (out of 40
detections) where the crawler erroneously concluded video play-
back had taken place. These were due to menu animations, audio
guides and background music. We found no false negatives.

3.2.3 Collecting Network Data and Intercepting Encrypted Commu-
nications. The crawler collects the entire network level data as a
PCAP file from the time of launching each channel to the time it is
uninstalled. For each channel, the PCAP dump contains informa-
tion about all DNS queries, HTTP requests, and TLS connections
made during the crawl. The crawler also keeps track of all DNS
queries in a Redis2 key-value database for immediate retrieval and
further analysis. The crawler attempts to decrypt TLS traffic with
mitmproxy which we will describe next.

2https://redis.io
4

https://redis.io

(a) (b) (c)

(d) (e)

Figure 3: A run of our smart crawler on a channel on Roku. The smart crawler launches the channel from the home screen
(a); navigates to a video on the channel menu (b); waits for the video to start playing (c); plays and forwards the video (d); and
encounters an advertisement (e).

Decrypting TLS Trafficwith mitmproxy:An open-source tool
for intercepting and decrypting TLS traffic, mitmproxy [43], re-
places the server’s certificate with a different certificate transpar-
ently. If the channel does not properly validate the certificate, we
can successfully intercept the TLS session and decrypt the captured
traffic using the private key associated with the injected certifi-
cate. In practice, however, implementing this technique for OTTs
involves multiple challenges. An OTT channel may establish TLS
connections using a number of TLS implementations and settings,
some of which may reject the certificate used for interception and
the channel may fail to load at all. To overcome this, we wrote a
TLS intercept companion script for mitmproxy. After a channel
contacts a new TLS endpoint, the script learns whether or not the
connection can be intercepted for that channel by examining the
TLS alerts, and then adds the endpoints to the “no-intercept list” if
TLS interception fails. However, TLS failures caused during this
learning phase regularly interfere with the loading of a channel.
In order to avoid such failures, we perform a warm-up stage in
which we launch each channel multiple times beforehand to learn
un-interceptable endpoints.

We also perform a number of optimizations to minimize the
chance of TLS interception interfering with channel loading and
performance. First, since the validation of the server’s TLS certifi-
cate is performed on the client side, we assume all domains mapped
to the same IP address behave similarly with respect to TLS inter-
ception. Therefore, our TLS intercept script uses the DNS capture
daemon to obtain all other IP addresses mapped to the same domain
and add them to the “no-intercept list”. Second, we use the Public
Suffix List [28] to extract base domains from hostnames, and we
treat a base domain and its subdomains in the same way. Third, the
script signals to the crawler when we learn no new un-interceptable
endpoint during a warm-up launch, so the crawler can finish the
warm-up phase earlier to save time. See Appendix A for more in-
formation on how we chose our warm-up parameters such as the

number of warm-up crawls. Finally, for each channel, the crawler
dumps all the TLS session keys for each intercepted session into a
file, which can be used by Wireshark/tshark3 to decrypt sessions.
We then generate a list of all successfully intercepted endpoints.

Certificate Injection and Pinning: On Roku, our TLS inter-
ception rate is bounded by the number of channels with incorrect
validation of certificates, since we cannot deploy our own certificate
to the device. We compared the success rate of TLS interception us-
ing different X.509 certificates (see Appendix A for details) and used
a self-signed certificate generated by mitmproxy with a common
name matching the original certificate’s common name.

On the Amazon Fire TV, however, we gained access to the sys-
tem certificate store by rooting the device and installed our own
certificate [70]. This allowed us to intercept more TLS endpoints
beyond the ones that had a faulty certificate validation implemen-
tation. However, many channels and system services use certificate
pinning [55]. We built a script which uses the Frida toolkit [29]
to bypass channel level certificate pinning for all of the running
channels, which we discuss in detail in Appendix B.

3.3 List of Crawls
Next, we summarize the list of crawls we conducted, and we de-
scribe the configurations for each crawl. As shown in Table 1, we
conducted five different crawls on each platform.

3.3.1 Smart Crawls. In the following crawls, we used the smart
crawler to interact with and trigger video playback on channels
compiled using the method described in Section 3.1:

• Top1K Crawls: We crawled the top 1,000 channels—Roku-
Top1K and FireTV-Top1K—on both the Roku and Amazon
Fire TV channel stores with two configurations. In the first
configuration, we intercepted encrypted traffic on both Roku
and the Amazon Fire TV channels using the techniques

3https://www.wireshark.org/docs/man-pages/tshark.html
5

https://www.wireshark.org/docs/man-pages/tshark.html

R
aw

 D
ata

PCAP

Timestamps

Screenshots

TLS Info

HTTP
Session

Data

Domain
Names

Channel
Metadata

Tracker
Databases

Prcoessed D
ata

External Data SourcesCrawl Data

Data
Analysis

Figure 4: Data processing pipeline

we described in Section 3.2.3. We call these crawls Roku-
Top1K-MITM and FireTV-Top1K-MITM respectively. As
a point of comparison, we crawled the same channels with-
out intercepting any encrypted traffic to analyze the suc-
cess of our interception. We call these crawls Roku-Top1K-
NoMITM and FireTV-Top1K-NoMITM.

• Privacy SettingsCrawls:Next, we examined the efficacy of
the privacy settings provided by Roku and the Amazon Fire
TV. To do so, we first crawled the top 100 channels—Roku-
CategoriesTop100 and FireTV-CategoriesTop100—picked across
ten different categories from the Roku and Amazon Fire
TV channel stores, intercepting encrypted traffic as before.
We call these crawls Roku-CategoriesTop100-MITM and
FireTV-CategoriesTop100-MITM respectively. We then
repeated the same crawls, this time enabling the “Limit Ad
Tracking” (Roku) and the “Disable Interest-based Ads” (Ama-
zon Fire TV) settings.We call these crawlsRoku-Categories-
Top100-LimitAdTracking and FireTV-CategoriesTop100-
DisableInterestAds respectively.

3.3.2 Manual Crawls. While our smart crawler is optimized to
play videos on many kinds of channels, it fails to navigate channels
that require human input (e.g., account registration and payment).
To overcome this limitation, we manually interacted with the top 30
channels by rank from the Roku-Top1K and FireTV-Top1K channel
lists. This included 1) signing up for accounts where possible, and
2) paying for premium and paid services using a credit card where
necessary .We call these crawlsRoku-Top30-Manual-MITM and
FireTV-Top30-Manual-MITM respectively.

We crafted a protocol to ensure consistency in the manual crawls.
When the channel required signing up on the web or visiting a
website to enter a one time code, we launched an instance of Open-
WPM tool [23] to perform the required authentication steps on
the web and to collect the HTTP traffic for further analysis. We
then attempted to view videos on the channel and fast forwarded
to maximize observing ads. We spent no more than three minutes
playing videos on each channel. The manual crawls collected the
same network-level data as the smart crawls.

4 PROCESSING CRAWL DATA
In this section, we describe the raw data our crawler collected and
the post-processing steps we performed after data collection.

4.1 Data Files
Our crawler generated a number of different files for each channel,
as discussed below:

• PCAPDumps: These contain network traffic for each channel
crawled, filtered by the OTT device’s IP address. These files
constituted the basis of our analyses.

• SSL Key Log Files: These files contain the SSL keys used to
intercept TLS sessions, all stored in NSS key log format [46].
These files can be used with wireshark or tshark to decrypt
PCAP dumps4.

• Events and Timestamps: For each channel it crawled, the
crawler recorded a list of associated events in chronological
order. These events included channel install, channel launch,
channel uninstall, and any key presses (using the remote
control API). We used these event timestamps to map events
to network traffic patterns.

• TLS Artifacts: The crawler recorded a list of TLS endpoints
that it successfully and unsuccessfully intercepted, along
with the corresponding domain names. It used these map-
pings in subsequent crawls to minimize the warm-up period
and to speed up crawling.

• Screenshots: The crawler captured screenshots from each
channel it crawled and stored them in a folder. We used these
screenshots to visually verify the crawler’s interaction with
each channel.

• Audio Recordings: The crawler recorded any audio that each
channel played. It used these files to detect video playback.

4.2 Data Processing
After gathering the raw data for each crawl, we performed a pro-
cessing step to extract relevant information. For instance, since we
selectively attempted to intercept TLS connections, we needed a
way to detect connections that we attempted to intercept. To do this
we looked for certificates issued by mitmproxy using the follow-
ing tshark filter: x509sat.uTF8String==mitmproxy. We labeled
TLS connections as successfully intercepted if there was at least one
TLS record containing payload (i.e. with ssl.record.content_-
type equal to 23) that was sent from the OTT device. We labeled
the remaining TLS connections, which were attempted but had no
payload originating from the OTT device, as interception failures.

We also used TCP connections throughout the paper for vari-
ous measurements, since they contain both encrypted and unen-
crypted connections. For certain analyses, including measuring
tracker prevalence, we needed a way to determine the hostname
that corresponded to the destination IP address of a TCP connec-
tion. DNS queries collected during the crawls can be used for this
purpose, but IP addresses may be shared by different domains (e.g.
in a Content Delivery Network (CDN) setting), making it possible
to have one IP address mapping to several domains. Indeed, we ob-
served such collisions during our preliminary analysis. To reliably
map IP addresses to hostnames, we followed a layered approach
that made use of HTTP, TLS or DNS data, in this particular order.
For a given TCP connection in a channel’s network traffic: (i) we
first checked whether there were any HTTP requests with a match-
ing TCP stream index. If there were, we assigned the Host header of
4 https://docs.mitmproxy.org/stable/howto-wireshark-tls/

6

Device and Crawl Name Channel
Count

TLS
Intercept?

Limit Ads
Enabled?

Channels
Completed

Video
Playback (%)

Unique
Domains

Roku-Top1K-NoMITM 1,000 No No 981 69 1,017
Roku-Top1K-MITM 1,000 Yes No 982 62 1,043
Roku-CategoriesTop100-MITM 100 Yes No 100 55 266
Roku-CategoriesTop100-LimitAdTracking 100 Yes Yes 100 56 294
Roku-Top30-Manual-MITM 30 Yes No 30 90 135
FireTV-Top1K-NoMITM 1,000 No No 956 59 1,019
FireTV-Top1K-MITM 1,000 Yes No 955 51 1,014
FireTV-CategoriesTop100-MITM 86 Yes No 80 53 268
FireTV-CategoriesTop100-DisableInterestAds 86 Yes Yes 80 56 262
FireTV-Top30-Manual-MITM 30 Yes No 29 86 140

Table 1: Overview of the crawls we conducted in this study using our smart crawler. In the crawls where “TLS intercept?” is
“Yes”, we either did warm-up launches during the crawl or loaded warm-up domain information from previous crawls.

the request. If this failed, (ii) we searched for a TLS handshake sent
over this TCP connection and used its TLS Server Name Indication
(SNI) [6] field to determine the hostname (since SNI field is used to
indicate which hostname a client is attempting to connect over TLS).
If both of these failed, (iii) we used the DNS queries made during
the crawl of this channel to determine the hostname corresponding
to the server IP address.

In addition to HTTP 1.1 traffic, we extracted headers and payload
from HTTP/2 frames present in the Fire TV crawls. We mapped
HTTP/2 specific headers to their HTTP/1.1 counterparts (e.g. au-
thority header to host header), and combined data from both
HTTP versions in a unified format for ease of processing.

Finally, we used channel metadata, as discussed in Section 3.1, to
retrieve channel ID, category, and rank to label the network traffic
we observed. We also made use of existing tracking databases to
classify domains as potential tracking domains, discussed further
in Section 5.2.1. Figure 4 illustrates our data processing pipeline.

We used five popular ad-blocking/tracking protection lists to
check the blocked status of HTTP requests and TCP connections:
EasyList [16], EasyPrivacy [17], Disconnect [15], Ghostery [30] and
Pi-hole [57]. The first four lists are widely used by millions of users,
and they provide good coverage to block ads and prevent track-
ing on the web. Pi-hole, on the other hand, is a network-level ad
blocker which can be used to block a wider set of trackers, includ-
ing those present in IoT devices and Internet-connected TVs. We
refer to hosts and domains detected by these five lists as tracking
domains, acknowledging that the term may be too general for dif-
ferent types of practices such as analytics, audience measurement,
and ad impression verification.

5 FINDINGS
This section covers our findings from smart crawls. We present
an overview of the data we collected, followed by an analysis of
tracking on channels and effectiveness of tracking countermeasures.
Finally, we discuss some of the security properties and practices on
the two OTT platforms we studied.

5.1 Data and Crawl Overview
As summarized in Table 1, we used a few different metrics to quan-
tify the success of each crawl. First, we counted the number of
“completed” channels in a crawl. We define “completed” channels
as those that were successfully installed, interacted with, and then
uninstalled by our crawler. Some channels may fail during install
or launch for different reasons (e.g., network issues). Second, we
counted the number of channels for which our smart crawler was
able to reach video playback by using the remote control API in
a crawl. Some channels may not have resulted in video playback
because of complex interfaces (e.g., logging into an account, as ex-
plained in Section 3.3.2). Third, and finally, we counted the number
of unique domains contacted by all channels in the crawl. This
number indicates the range of endpoints the device contacted dur-
ing the crawl. Together, these metrics provide a basis for sanity
check of the different crawls—each with different parameters—on
the same channel list.

We note two important observations about the overall results
of our crawls (Table 1). First, on both Roku and the Amazon Fire
TV, the crawls with and without TLS interception have similar
success rates based on the metrics we define above. Thus, we can
conclude that our TLS interception does not break channels’ func-
tionality. Second, our video playback rates are similar to our initial
experiments and trials detailed in Section 3.2.2.

5.2 Tracker prevalence
We first present an overview of the trackers the Roku and Amazon
Fire TV channels contact using data from the Roku-Top1K-MITM
and FireTV-Top1K-MITM crawls. We refer to tracking domains,
which we described in Section 4, as “trackers” hereafter for the sake
of brevity.

5.2.1 Trackers that are present on most channels. Table 2 lists the
top 10 trackers in order of prevalence across all the channels in the
Roku-Top1K-MITM and FireTV-Top1K-MITM crawls. Across the
Roku channels, doubleclick.net—owned by Google—was by far
the most prevalent tracker, appearing on 975 of the 1,000 channels.
Across the Amazon Fire TV channels, Amazon’s own advertising
tracking domain, amazon-adsystem.com was most prevalent, ap-
pearing in 687 of the 1,000 channels.

7

Tracker Domain
Channel
Count

doubleclick.net 975
google-analytics.com 360
scorecardresearch.com 212
spotxchange.com 212
googlesyndication.com 178
imrworldwide.com 113
tremorhub.com 109
innovid.com 102
2mdn.net 88
vimeo.com 86

Tracker Domain
Channel
Count

amazon-adsystem.com 687
crashlytics.com 346
doubleclick.net 307
google-analytics.com 277
facebook.com 196
d3a510xmpll7o6.cloudfront.net 180
app-measurement.com 179
googlesyndication.com 145
imasdk.googleapis.com 129
gstatic.com 127

Table 2: Most prevalent trackers from the Roku-Top1K-
MITM (left) and the FireTV-Top1K-MITM (right) crawls.

Three Google domains associated with advertising and ana-
lytics (doubleclick.net, google-analytics.com, and google-
syndication.com) are present in the top ten trackers list of both
platforms. While facebook.com appeared in traffic from 196 Ama-
zon Fire TV channels, it was only present in one Roku channel.
This finding is in line with the results from tracking studies on
web [23, 42, 63] and mobile [59] platforms that indicate that Face-
book and Google advertising and tracking services are prevalent in
web and mobile ecosystems as well as the OTT platforms, allowing
them to create a more complete profile of users.

5.2.2 Channels that contact the most trackers. To further examine
the distribution of trackers beyond prevalence, we examined their
distribution across channel categories and channel ranks for both
the Roku and Amazon Fire TV channels. The faceted plots in Fig-
ure 5a and Figure 5b illustrate this distribution for the Roku and
Amazon Fire TV channels respectively. To complement the plots,
Table 3 and Table 4 order channels by the number of trackers they
contact. As expected, overall across the Roku and Amazon Fire TV
channels we observe that channels that played video (orange dots)
contain more trackers than those that failed to play video (blue
dots).

Examining the distribution of trackers across channel categories,
we notice several interesting patterns. For example, the “Games”
category of Roku channels contact the most trackers, with 9 of
the top 10 channels ordered by the number of trackers (Tables 3)
being all from this category. On further inspecting these game
channels, we discovered that these channels contained a similar
number of trackers (37–42) and were published by the same de-
veloper (StuffWeLike). Also, five of the ten Fire TV channels with
the most trackers are “News” channels (Table 4), where the top
three channels contact close to 60 tracker domains each. This result
implies that tracking behavior of channels differs depending on the
category of the channel and that the users of certain categories are
more susceptible to tracking.

5.3 Identifier and Information Leakage
Next, we investigate what pieces of information each domain that
the channels in our dataset contact collect about users. This infor-
mation reveals behaviors of existing trackers, as well as potentially
new and previously unknown trackers.

Channel Name Rank Category
Tracker
Count

StarGazer 1012 Special Interest 50
Rock Paper Scissors Free 437 Games 42
Falling Down Free 421 Games 42
Marble Blast Free 738 Games 41
Ping Pong Free 447 Games 41
Basketball Shots Free 211 Games 41
Swing Hero Free Game 504 Games 40
Pop Lock Free 489 Games 40
Pulse Free 844 Games 37
Soccer Shots Free 509 Games 37

Table 3: Top 10 channels from the Roku-Top1K-MITM based
on the number of trackers they contact.

Channel Name Rank Category
Tracker
Count

WNEP - Proud to Se... 739 News 64
ABC7 News San Fran... 503 News 61
WTTV CBS4 Indy 1157 News 58
Midnight Pulp 933 Movies & TV 32
Xtreme Vegas - Cla... 341 Games 30
Xtreme Slots - FRE... 406 Games 28
WVTM 13 -Birmingha... 1022 News 25
IP Tools: Network ... 1029 Utilities 22
ABC11 Raleigh-Durh... 595 News 20
FreeCell Solitaire 894 Games 19

Table 4: Top 10 channels from the FireTV-Top1K-MITM
based on the number of trackers they contact.

For this analysis, we compiled a list of possible identifiers and
information that trackers could possibly collect about users. We
based this list on pieces of device and user identifiers already avail-
able on the device interfaces (e.g., account information) and also
on our preliminary analysis of the PCAP files. Table 5 lists these
identifiers. We searched for these identifiers and pieces of informa-
tion in the HTTP traffic resulting from the Roku-Top1K-MITM and
FireTV-Top1K-MITM crawls.

Since these identifiers may be transmitted as encoded or hashed,
we searched for various encoding and hashing combinations using
the method described by Englehardt et al. [22]. This allowed us to
detect URL and Base64 encoded identifiers, as well as hashed IDs.
We performed the search on the path section of the URL, referrer
and cookie headers, and post body of the HTTP requests. The
detection results are shown in Table 6.

On Roku, we discovered that 4,452 of the 6,142 (nearly 73%) re-
quests containing one of the two unique IDs (AD ID, Serial Number)
are flagged as trackers. On Amazon 3,427 of the 8,433 (41%) unique
identifiers are sent in cleartext.

In order to further understand the implication of subscription
services, we manually crawled 30 channels on both Roku and Ama-
zon platforms (as mentioned in Section 3.3.2). We collected network
traffic of the OTT device and the website used to register and sign-
in to the service. We used our tool to observe cross-device tracking
and sharing of identifier with third-party trackers during these
steps. We found four channels, two on each platform, that share the

8

Make data ready for plotting

roku1k_uniq <- roku1k_top %>%
filter(adblocked == "True") %>%
distinct(channel_id, domain, category, rank, playback) %>%
group_by(channel_id, category, rank, playback) %>%
count() %>%
arrange(rank)

Plot

#roku1k_uniq <- roku1k_uniq %>% group_by(category) %>% mutate(med = median(n))

ggplot(roku1k_uniq, aes(x=rank, y=n, color=playback)) +
geom_point(size=0.67, alpha=0.6) +
coord_cartesian(xlim = c(min(roku1k_uniq$rank), quantile(roku1k_uniq$rank, 0.99)),

ylim = c(min(roku1k_uniq$n), quantile(roku1k_uniq$n, 0.997))) +
facet_wrap(~category, nrow=2, ncol=5) +
ylab("Number of Tracking Domains") +
xlab("Channel Rank") +
labs(color="Video Played?") +
scale_colour_Publication() +
theme_Publication()

Music News & Weather Religious Special Interest Sports

Games International Kids & Family Lifestyle Movies & TV

0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000

0

10

20

30

40

0

10

20

30

40

Channel Rank

N
um

be
r o

f T
ra

ck
in

g
D

om
ai

ns

Video Played? False True

#+ geom_hline(aes(yintercept = med, group = category), colour = "black", linetype = 2)

4

(a) Roku-Top1K-MITM

Music & audio News Novelty Sports Utilities

Games Health & fitness Kids Lifestyle Movies & TV

0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000

0

10

20

30

40

0

10

20

30

40

Channel Rank

N
um

be
r o

f T
ra

ck
in

g
D

om
ai

ns

Video Played? False True

#+ geom_hline(aes(yintercept = med, group = category), colour = "black", linetype = 2)

5

(b) FireTV-Top1K-MITM

Figure 5: Distribution of trackers in the Roku-Top1K-MITM and FireTV-Top1K-MITM across channel ranks and channel cat-
egories.

Identifier Name Persistence Source
Serial No. Lifetime of the device Roku,Amazon
AD ID Until reset by user Roku,Amazon
MAC Addr Lifetime of the device Roku,Amazon
Device Name Until reset by user Roku,Amazon
Software Version Lifetime of S/W update Amazon
FireTV Home Version Lifetime of S/W update Amazon
Android ID Lifetime of the device Amazon
Bluetooth MAC Addr Lifetime of the device Amazon
Device ID Lifetime of the device Roku
Device Account Email Until reset by user User
Device Account Pwd Until reset by user User
Zip Code Until device is moved —
City Until device is moved —
State Until device is moved —
WiFi SSID Until reset by user Network

Table 5: The various device and user identifiers we checked
for leaks in our study.

email address of the profile used for account creation with third-
party trackers on the web. We also found one Amazon channel
sharing the zip code with a third-party on the web. Finally, for each
channel, the tracking domains that are contacted both on the web
(during registration or sign-in) and by the device, are potentially
able to track users across web and OTT. We measured the presence
of such domains in the 30 channels we manually crawled on each
platform. On Roku, 4 channels had overlapping tracking domains
on their device and web traffic, while on Amazon we found 7 such
channels.

5.3.1 Detecting New Tracking Domains. Our analysis of trackers so
far is based on existing adblocking lists. In this subsection, we use
domains’ behavior to detect previously unknown trackers. To this
end, we used a combination of automated processing and manual
false positive removal on the Roku-Top1K-MITM. We first built
a list of domains that received unique identifiers, namely AD ID

Identifier
Leak
Count

Channel
Count

AD ID 2650 320
Channel name 2331 197
Serial No 996 110
City 64 11
State 33 6
Zip 61 10

Identifier
Leak
Count

Channel
Count

Android ID 3856 394
MAC 138 52
Serial No 377 105
Device name 64 40
AD ID 953 221
Zip 190 28
City 285 26
Wifi SSID 204 21
Channel name 5248 223
State 67 12

Table 6: Overview of identifier and information leakage
detected in the Roku-Top1K-MITM (left) and the FireTV-
Top1K-MITM (right) crawls. We excluded leaks to platform
domains roku.com and amazon.com from this table.

and device serial number. We removed known trackers from this
list using the five adblocking lists that we used throughout the
study. We then eliminated domains that were contacted only in
one channel. Finally, we manually removed false positives using a
WHOIS service, marketing materials, and other publicly available
information. We provide a list of these domains in Appendix C.

5.3.2 Title Leak Detection. To determine whether trackers collect
information about users’ viewing habits, we checked whether chan-
nels shared video titles with the trackers. To this end, we randomly
selected 100 channels on each platform from the subset of channels
for which we detected video playback. The screenshots from each of
these channels’ menus were then manually reviewed to determine
the title of the video. If a channel had a generic title such as "Live
News" displayed in the menu, the screenshots of the video playback
itself would be viewed to try to determine the most accurate title.
Finally, we searched for different encodings of each video title in
the network traffic, following a similar approach to the ID leak
detection method explained in Section 5.3.

9

Requests and
Identifier leaks

Limit Ad
Tracking?

No (default) Yes
No. of HTTP requests 4120 3880
No. of contacted tracker domains 96 128
No. of contacted domains 266 294
AD ID (# instances/ # channels) 390/30 0/0
Serial No. (# instances/ # channels) 135/14 118/13

Table 7: Choosing to “Limit Ad Tracking” on the Roku
Express (Roku-CategoriesTop100-LimitAdTracking crawl)
seemingly makes no difference to the number and types of
leaks to trackers except the AD ID is not leaked at all.

We found 9 channels on Roku and 14 channels on the Fire TV,
among the 100 channels we randomly selected on each device, that
leaked the title of the video to a tracking domain. The majority
of these channels were news channels with 8 channels on Roku
and 7 channels on Fire TV being news related. We list the channel
name, video title, and tracking domain the title was leaked to in
the Appendix G (Table 13 for Roku and Table 14 for Fire TV). On
Roku, all video titles are leaked over unencrypted connections,
exposing users’ viewership preferences to eavesdroppers. On Fire
TV, only two channels (NBCNews andWRAL) used an unencrypted
connection when sending the title to tracking domains.

The study byMalkin et al. [41] shows only 29% of Smart TV users
surveyed believed it was acceptable for the advertiser to collect
their viewing behavior, and our findings show the gap between user
expectation and current tracking practices. Furthermore, as we will
discuss in Section 6, this type of tracking may be subject to certain
legislation such as the Video Privacy Protection Act (“VPPA") in
the United States which prohibits collecting the viewing history of
clients for video rental services.

5.4 Effect of countermeasures
Both Roku and Amazon Fire TV provide privacy options to users
that purport to limit tracking on their devices. On Roku, this option
is called “Limit Ad Tracking” and on Amazon Fire TV it is called
“Disable Interest based Ads”. Both options are off by default.

“Limit Ad Tracking” on Roku: To find out the effect of this
option, we ran a crawl with “Limit Ad Tracking” on and compared
the results to a crawl with the same parameters, except with “Limit
Ad Tracking” turned off. For comparison, we measured the AD
ID and serial number leaks; number of tracker domains contacted;
and the number of HTTP requests. Turning on “Limit ad tracking”
reduced the number of AD ID leaks from 390 to zero, but did not
affect the number of trackers contacted by the channels (Table 7).
Moreover, the number of serial number leaks stayed the same. The
increase in the number of contacted domains (96 to 128) also points
to the limited efficacy of the “Limit Ad Tracking” option.

“Disable Interest based ads” on Amazon:Next, we evaluated
the effect of the “Disable Interest based ads” option that is avail-
able on the Fire TV. Comparing the domains contacted in FireTV-
CategoriesTop100-DisableInterestAds and FireTV-CategoriesTop100-
MITM crawls, we found that the number of requests to amazon--
adsystem.com decreased from 65 to just 10 channels, meaning
Amazon seemingly reduced access to its own advertising system.

Requests and
Identifier leaks

Disable Interest
Based Ads?

No (default) Yes
No. of HTTP requests 8895 8269
No. of contacted tracker domains 119 115
No. of domains 268 262
AD ID (# instances/ # channels) 198/35 144/16
Android ID (# instances/ # channels) 607/69 638/65
Serial No. (# instances/ # channels) 151/33 127/24
MAC Addr. (# instances/ # channels) 22/3 26/3

Table 8: Choosing to “Disable Interest Ads” on the Amazon
Fire TV Stick (FireTV-CategoriesTop100-DisableInterestAds
crawl) seemingly makes no difference to the number and
types of leaks to trackers except nearly 50% fewer channels
leak the AD ID when the option is enabled.

We also observed that the trackers collecting the AD ID reduced
by nearly half. However, as Table 8 shows, the remaining traffic,
including the other identifiers communicated to trackers, remained
largely the same.

Both Roku and Amazon state in their developer documentation
that if the privacy option is enabled, the AD ID “should not be
used for targeted advertising” [64] or to “collect information about
the user’s behavior to build user profiles for advertising purposes”.
Nevertheless, developers can use the AD ID for activities such as
frequency capping, contextual advertising, conversion tracking,
reporting, and security and fraud detection [4, 66]. Our data, how-
ever, reveals that even when the privacy option is enabled, there
are a number of other identifiers that can be used to track users,
bypassing the privacy protections built into these platforms5.

Pi-hole’s network-level blocking. Pi-hole uses amodified ver-
sion of dnsmasq to block DNS queries containing unwanted hosts.
Pi-hole blocks DNS queries based on hostnames, although a wild-
card blocking feature was recently added6. Pi-hole comes with a
default list of blocked hostnames, but does not come with wildcard
patterns at the install time.

Reading through the Pi-hole’s source code, we compiled a list of
hostnames that it blocks by default. Pi-hole’s installation wizard
offers seven different lists that are turned on by default7. In our
simulations we assumed the user would select all lists offered to
them, the most conservative approach. We then simulated Pi-hole
blocking on the data we collected.

Pi-hole blocked 4,226 of the 18,075 HTTP requests made in
the Roku-Top1K-MITM crawl. This corresponds to 71% of the 5,983
requests blocked by four other blocking lists (EasyList, EasyPri-
vacy, Disconnect and Ghostery). Inspecting the hostnames of these
missed requests, we found that Pi-hole’s blocklist actually contained
hostnames from 38 of the 70 domains that were missed. The missed
requests were commonly due to a different subdomain of the same
tracker.

Simulating Pi-hole’s blocking of the information leaks we find
that 26.7% of the AD ID leaks and 44.6% of the serial number leaks
5In fact, to comply with the European Union’s General Data Protection Regulation
(“GDPR”), Roku sets the Limit Ad Tracking value to “true” on all devices in the EU [68],
which seems inadequate given our result.
6https://docs.pi-hole.net/ftldns/regex/overview/
7https://git.io/fjNsi

10

https://docs.pi-hole.net/ftldns/regex/overview/
https://git.io/fjNsi

Domain
Channel
Count

doubleclick.net 266
google-analytics.com 175
scorecardresearch.com 145
roku.com 145
ifood.tv 90
tremorhub.com 79
stickyadstv.com 74
irchan.com 74
monarchads.com 73
1rx.io 66

Domain
Channel
Count

amazon-adsystem.com 678
scorecardresearch.com 108
ifood.tv 50
images-amazon.com 45
cloudinary.com 32
titantv.com 29
wsi.com 27
cdn01.net 24
lightcast.com 24
demdex.net 22

Table 9: Most prevalent domains contacted over unen-
crypted connections in the Roku-Top1K-NoMITM (left) and
the FireTV-Top1K-NoMITM (right) crawls.

Channel Name Rank Hostname
DIRECTV NOW 7 api.cld.dtvce.com
VUDU 15 apicache.vudu.com
VUDU 15 vudu.d1.sc.omtrdc.net
NBC 19 ws-cloudpath.media.nbcuni.com
Fox News Channel 35 api.segment.io
fuboTV Watch Live Sports & TV 43 api.fubo.tv
fuboTV Watch Live Sports & TV 43 api.segment.io
fuboTV Watch Live Sports & TV 43 app.launchdarkly.com
Newsy 45 cloudapi.imrworldwide.com
MTV 54 auth.mtvnservices.com

Table 10: Top channels where TLS Connections were in-
tercepted and decrypted by our smart mitmproxy (Roku-
Top1K-MITM crawl).

are missed by Pi-hole. Finally, we list the domains that received
these IDs and were missed by Pi-hole in Table12 in Appendix E.

5.5 Network Connection Security
5.5.1 Unencrypted Connections. Analyzing the requests sent over
port 80 we found that 794 of the 1000 Roku channels sent at least
one request in cleartext. Those channels contacted 191 distinct
hosts from 123 distinct domains without encryption.

Similarly, 762 of the 1000 Fire TV channels sent at least one
unencrypted request. The top 10 domains contacted over insecure
connections by Roku and Amazon are shown in Table 9. Notably,
Google and Amazon own the domains that are contacted by most
channels without encryption.

5.5.2 Certificate validation. On Amazon Fire TV, we were able to
install our own cert on the device which allowed us to intercept
HTTPS requests on 957 of the 1000 channels in the FireTV-Top1K-
MITM crawl. On Roku, a total of 43 channels failed to properly
verify the server’s certificate and allowed the smart proxy to decrypt
the TLS traffic. Table 10 shows the top ten TLS connections (by
channel rank) that our smart proxy was able to decrypt in the
Roku-Top1K-MITM crawl. Finally, we performed an analysis of the
TLS cipher suites used by different channels which can be found in
Appendix D.

5.6 Remote Control API Vulnerabilities
To investigate other ways OTT devices may compromise user pri-
vacy and security, we analyzed local API endpoints of Roku and
Fire TV. OTT devices expose such interfaces to enable debugging,
remote control, and home automation by mobile apps and other
automation software [65, 78]. In the past, security researchers iden-
tified several vulnerabilities of these interfaces, including Cross-Site
Request Forgery [75] and DNS Rebinding [1, 14]. Recently, Roku’s
External Control API, which we used in this study to automate
our crawls, was found to be vulnerable to a DNS Rebinding at-
tack [50, 65]. Moreover, similar attacks were found to be exploited
in the wild by exploit kits for malicious advertising purposes [34].

We limited our analysis of local interfaces to attacks by mali-
cious web scripts considering the large attack surface and limited
resources needed by an attacker. To perform this attack, the attacker
may run a malicious script (e.g. by running ads) on websites visited
by a user browsing from the same network that the OTT device is
connected to (e.g. a home network).

To discover available API endpoints, we installed mobile remote
control apps and reverse engineered the HTTP traffic while sending
available remote control commands to OTT devices. We also made
use of the API documentation available for the devices to discover
endpoints that were missing in the captured traffic [65, 78].

Roku: Roku has an extensive external control API that enables
automation by third-party software [65]. The API allows sending
commands to install/uninstall/change channels and retrieve device
information. The device information returned by the API includes
the complete list of installed channels, unique device identifiers (e.g.
MAC address, Ad ID, serial no), and SSID of the wireless network
that the device is connected to.

Analyzing the headers sent by Roku to remote control requests,
we discovered that Roku sends “*” in the “Access-Control-Allow-
Origin:” header. The “*” value relaxes cross-origin restrictions in
the browser and allows scripts from an arbitrary domains to read
cross-origin resources without being limited by the Same Origin
Policy [47]. This exposes Roku devices to attacks from all web pages
visited by Roku users.

We set up a page to demonstrate the attack and verified that a
malicious web page visited by Roku users (or third-party scripts
embedded on them) can abuse the External Control API to:

• Send commands to install/uninstall/launch channels and
collect unique identifiers from Roku devices - even when the
connected display is turned off.

• Geolocate Roku users via the SSID of the wireless network
andWiFi SSID&Geolocation databases (such asWiGLE [80]).

• Extract MAC address, serial number, and other unique iden-
tifiers to track users or respawn tracking identifiers (similar
to evercookies [35]).

• Get the list of installed channels and use it for profiling pur-
poses. For instance, the existence of health/religion/children
focused channels can be used to infer victims’ sensitive per-
sonal attributes and their lifestyles.

We reported the vulnerability to Roku in December 2018. Roku
addressed the issue by changing the value in the “Access-Control-
Allow-Origin” header. They finalized rolling out their security fix
by March 2019.

11

Fire TV: Fire TV provides a custom remote control API over
the network which allows a user to use their phone as the remote
control, which we analyzed in Appendix F.

6 DISCUSSION
Past research on user privacy expectations about smart TVs finds
that viewers find sharing of their data with advertisers unaccept-
able [41]. Our findings show that such concerned users have limited
options at their disposal. As emerging platforms, OTT services lack
tools, controls, and countermeasures available on the web and mo-
bile platforms. Users who enjoy installing adblockers for their web
browsers with just a few clicks often lack usable defenses to pro-
tect their video privacy on OTT platforms. Moreover, widespread
collection of persistent device identifiers like MAC addresses and
serial numbers disables one of the few defenses available to users:
resetting their advertising IDs. Trackers who collect persistent IDs
can link users’ activity even if they reset their AD IDs.

In addition, the tendency of companies to monetize users’ data
makes it difficult to incentivize privacy friendly practices. It is often
the role of regulators to keep platform and application developers
accountable. Our tool is an apt solution that can be used by regula-
tors to inspect channels and devices to enforce privacy regulations
on OTT platforms.

6.1 Recommendations
Based on our findings, we believe OTT vendors should borrow
ideas from other platforms, such as web, to provide a more privacy
friendly and secure experience to their users. Specifically, we make
the following recommendations based on our findings:

• OTT platforms should offer better privacy controls, sim-
ilar to Incognito/Private Browsing Mode of modern web
browsers. Platforms should ensure that linking of private
and non-private profiles of the same user is not possible by
partitioning identifiers and their storage along with denying
access to existing platform identifiers.

• Platforms should make it possible to monitor the content
of the network traffic, similar to browsers and operating
systems allowing intercepting one’s own traffic by installing
a self-signed certificate in the browser. This would allow
tech-savvy users and security researchers to analyze channel
behavior, leading to a more transparent ecosystem. These
features should require explicit user consent and display
their status prominently to mitigate the risk of use by one
user to spy on another user.

• To complement limited technical protections available to
users, regulators and policy makers should ensure the pri-
vacy protections8 available for brick and mortar video rental
services are updated to cover emergingOTT platforms, where—
as our research shows—users are constantly and pervasively
tracked.

• OTT platforms should introduce policies to disincentivize
insecure connections, for example, by blocking clear-text
connections unless an exception is requested by the channel
(similar to Apple’s App Transport Security feature[33]).

8e.g., the US Video Privacy Protection Act (“VPPA")

6.2 Limitations and Future Work
Below we discuss the limitations of our work and potential future
work to address these limitations.

6.2.1 Channel Login. Our crawler cannot go beyond login or signup
pages. This limitation, which is common among similar automation
tools, prevents us from reaching video playback on some channels.
As future work, we plan to integrate a real-time signal from an
image recognition script to detect, fill, and submit login forms dur-
ing crawls in order to increase the video playback rate. During the
manual crawl, we noticed some of the channels require sign up
through a web browser.

6.2.2 Background Traffic. Our traffic captures may contain back-
ground traffic from Roku and Amazon platforms. Based on our
preliminary analysis of the background traffic when no channel is
active, the effect on the results should be minimal. Distinguishing
background traffic for closed platforms like Roku is a problem we
plan to address in future studies.

6.2.3 Smart TV Platforms. We studied two of the most popular
OTT streaming devices, leaving out the smart TV platforms such as
Samsung, Vizio and Apple TV. We believe our automated crawler
can be easily modified to run experiments on these platforms, as
long as they have similar remote control APIs.

7 CONCLUSION
In this paper, we presented the first large scale study of tracking
by OTT streaming channels. Our measurement of the more than
2,000 OTT streaming channels revealed widespread user tracking
and data collection. To perform the study, we built a smart crawler
that automatically installs, launches, and interacts with the OTT
channels.

Our measurements showed that tracking is prevalent on the OTT
platforms we studied, with traffic to known trackers present on 69%
of Roku channels and 89% of Amazon Fire TV channels. We also
observed that certain OTT channels contact more than 60 tracking
domains and the data shared with the trackers include video titles,
WiFi SSIDs, MAC addresses and device serial numbers. Analyzing
the network data collected by our crawler, we discovered that 79%
of the Roku channels and 76% of the Fire TV channels send at least
one unencrypted HTTP request. Finally, we identified new tracking
domains not seen in previous tracking studies.

Our analysis of the available privacy countermeasures showed
that they are ineffective at preventing tracking. Such weak counter-
measures should be supported by policies and regulations to ensure
that users’ viewership information remains private.

8 ACKNOWLEDGEMENTS
This paper was supported in part by NSF awards CPS-1739809,
CNS-1553437 and CNS-1704105. We thank Kevin Borgolte and the
anonymous CCS reviewers for their comments.

12

REFERENCES
[1] Gunes Acar, Danny Yuxing Huang, Frank Li, Arvind Narayanan, and Nick Feam-

ster. 2018. Web-based Attacks to Discover and Control Local IoT Devices. In
Proceedings of the 2018 Workshop on IoT Security and Privacy. ACM, 29–35.

[2] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. 2013. FPDetective: dusting the web for fingerprinters.
In Proceedings of the 2013 ACM SIGSAC conference on Computer and Communica-
tions Security (CCS). 1129–1140.

[3] Amazon. 2019. Fire TV Apps. (2019). Retrieved August 25, 2019 from https://
www.amazon.com/Fire-TV-Apps-All-Models/b?ie=UTF8&node=10208590011

[4] Amazon. 2019. Fire TV Documentation. (2019). Retrieved August 25, 2019 from
https://developer.amazon.com/docs/fire-tv/advertising-id.html

[5] Amazon. 2019. Fire TV Stick. (2019). Retrieved August 25, 2019 from https:
//www.amazon.com/dp/B0791TX5P5?ref=ODS_v2_FS_SMP_TVStick

[6] Simon Blake-Wilson, Magnus Nystrom, David Hopwood, Jan Mikkelsen, and
Tim Wright. 2006. Transport layer security (TLS) extensions. Technical Report.
Retrieved August 25, 2019 from https://tools.ietf.org/html/rfc3546#section-3.1

[7] Piergiovanni Cipolloni. 2017. Universal Android SSL Pinning by-
pass with Frida. (2017). https://techblog.mediaservice.net/2017/07/
universal-android-ssl-pinning-bypass-with-frida/

[8] Comscore. 2016. Roku Leads OTT Streaming Devices in
Household Market Share. (2016). Retrieved August 25,
2019 from https://www.comscore.com/ita/Public-Relations/Blog/
Roku-Leads-OTT-Streaming-Devices-in-Household-Market-Share

[9] Dave Cooper. 2008. Internet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile. (2008). https://tools.ietf.org/html/rfc5280

[10] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. The Web’s
Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In Proceedings of
the 25th ACM Conference on Computer and Communication Security (CCS). ACM.
https://doi.org/10.1145/3243734.3243860

[11] Anupam Das, Nikita Borisov, and Matthew Caesar. 2014. Do You Hear What I
Hear?: Fingerprinting Smart Devices Through Embedded Acoustic Components.
In Proceedings of the 21st ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS). 441–452.

[12] Anupam Das, Nikita Borisov, and Matthew Caesar. 2016. Tracking Mobile Web
Users Through Motion Sensors: Attacks and Defenses. In Proceeding of 23rd
Annual Network and Distributed System Security Symposium (NDSS).

[13] Anupam Das, Nikita Borisov, and Edward Chou. 2018. Every Move You Make:
Exploring Practical Issues in Smartphone Motion Sensor Fingerprinting and
Countermeasures. Proceedings on Privacy Enhancing Technologies (PoPETs) 1
(2018), 88–108.

[14] Drew Dean, Edward W Felten, and Dan S Wallach. 1996. Java Security: From
HotJava to Netscape and Beyond. In Proceedings 1996 IEEE Symposium on Security
and Privacy. IEEE, 190–200.

[15] Disconnect. 2018. Disconnect defends the digital you. (2018). https://disconnect.
me/.

[16] EasyList. 2019. Overview. (2019). https://easylist.to/.
[17] EasyPrivacy. 2019. EasyPrivacy. (2019). https://easylist.to/tag/easyprivacy.html.
[18] Peter Eckersley. 2010. How Unique is Your Web Browser?. In Proceedings of the

10th International Conference on Privacy Enhancing Technologies (PETS). 1–18.
[19] eMarketer. 2018. US Connected TV Users, by Brand, 2018 & 2022.

(2018). Retrieved August 25, 2019 from https://www.emarketer.com/Chart/
US-Connected-TV-Users-by-Brand-2018-2022-of-connected-TV-users/220767

[20] Jasmine Enberg. 2018. Roku is winning the connected TV race,
and Amazon probably won’t catch up anytime soon. (2018). Re-
trieved August 25, 2019 from https://www.businessinsider.com/
roku-is-winning-the-connected-tv-race-ahead-of-amazon-2018-7

[21] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.
2014. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. ACM Transactions on Computer Systems (TOCS) 32,
2 (2014), 5.

[22] Steven Englehardt, Jeffrey Han, and Arvind Narayanan. 2018. I never signed up
for this! Privacy implications of email tracking. Proceedings on Privacy Enhancing
Technologies 2018, 1 (2018), 109–126.

[23] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of ACM CCS 2016.

[24] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,
Jonathan Mayer, Arvind Narayanan, and Edward W Felten. 2015. Cookies That
Give You Away: The Surveillance Implications of Web Tracking. In Proceedings of
the 24th International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 289–299.

[25] Susan Engleson. 2018. State of OTT: An in-depth look at today’s over-the-top con-
tent consumption and device usage. (2018). Retrieved August 25, 2019 from https:
//www.aaaa.org/wp-content/uploads/2017/07/ComScore-State-of-OTT.pdf

[26] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In 2016 IEEE symposium on security and

privacy (SP). IEEE, 636–654.
[27] David Fifield and Serge Egelman. 2015. Fingerprinting Web Users Through Font

Metrics. In International Conference on Financial Cryptography and Data Security.
Springer, 107–124.

[28] Mozilla Foundation. 2019. Public Suffix List. (2019). Retrieved August 25, 2019
from https://publicsuffix.org/

[29] Frida. 2019. A world-class dynamic instrumentation framework. (2019). https:
//www.frida.re/

[30] Ghostery. 2019. Ghostery Makes the Web Cleaner, Faster and Safer! (2019).
Retrieved August 25, 2019 from https://www.ghostery.com/

[31] Gábor György Gulyás, Gergely Acs, and Claude Castelluccia. 2016. Near-optimal
fingerprinting with constraints. Proceedings on Privacy Enhancing Technologies
2016, 4 (2016), 470–487.

[32] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David
Wetherall. 2011. “These Aren’t the Droids You’re Looking For”: Retrofitting
Android to Protect Data from Imperious Applications. In Proceedings of the 18th
ACM conference on Computer and communications security. ACM, 639–652.

[33] Apple Inc. 2019. Preventing Insecure Network Connections | Apple Developer
Documentation. (2019). https://developer.apple.com/documentation/security/
preventing_insecure_network_connections.

[34] KAFEINE. 2016. Home Routers Under Attack via Malvertising on Windows,
Android Devices. (2016). https://www.proofpoint.com/us/threat-insight/post/
home-routers-under-attack-malvertising-windows-android-devices.

[35] Samy Kamkar. 2019. evercookie - virtually irrevocable persistent cookies. (2019).
https://samy.pl/evercookie/.

[36] Balachander Krishnamurthy and Craig Wills. 2009. Privacy diffusion on the web:
a longitudinal perspective. In Proceedings of the 18th international conference on
World wide web. ACM, 541–550.

[37] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix Freiling.
2017. Fingerprinting Mobile Devices Using Personalized Configurations. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs) 2016, 1 (2017), 4–19.

[38] Adam Levy. 2018. Roku’s Advertising Revenue Will Surpass Its Player Revenue
This Year. (2018). RetrievedAugust 25, 2019 fromhttps://www.fool.com/investing/
2018/03/26/rokus-advertising-revenue-will-surpass-its-player.aspx

[39] Timothy Libert. 2015. Exposing the Hidden Web: An Analysis of Third-Party
HTTP Requests on OneMillionWebsites. International Journal of Communication
(2015).

[40] Franco Loi, Arunan Sivanathan, Hassan Habibi Gharakheili, Adam Radford,
and Vijay Sivaraman. 2017. Systematically evaluating security and privacy for
consumer IoT devices. In Proceedings of the 2017 Workshop on Internet of Things
Security and Privacy. ACM, 1–6.

[41] Nathan Malkin, Julia Bernd, Maritza Johnson, and Serge Egelman. 2018. “What
Can’t Data Be Used For?” Privacy Expectations about Smart TVs in the US. In
European Workshop on Usable Security (Euro USEC).

[42] Jonathan R Mayer and John C Mitchell. 2012. Third-party web tracking: Policy
and technology. In Proceedings of the 33rd IEEE Symposium on Security and Privacy
(SP). 413–427.

[43] mitmproxy. 2019. How mitmproxy works. (2019). https://docs.mitmproxy.org/
stable/concepts-howmitmproxyworks/.

[44] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. 2011. Fin-
gerprinting Information in JavaScript Implementations. In Proceedings of W2SP,
Vol. 2.

[45] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. In Proceedings of Web 2.0 Security and Privacy Workshop (W2SP).

[46] MDN Web Docs Mozilla. 2019. NSS Key Log Format. (2019). Retrieved August
25, 2019 from https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/
Key_Log_Format

[47] MDN Web Docs Mozilla. 2019. Same-origin policy. (2019). Retrieved August 25,
2019 from https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_
policy

[48] Sashank Narain, Triet D Vo-Huu, Kenneth Block, and Guevara Noubir. 2016.
Inferring User Routes and Locations using Zero-Permission Mobile Sensors. In
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 397–413.

[49] Inc. Netflix. 2018. DIAL. (2018). http://www.dial-multiscreen.org/.
[50] Lily Hay Newman. 2019. Millions of Google, Roku, and Sonos Devices Are

Vulnerable to a Web Attack | WIRED. (2019). https://www.wired.com/story/
chromecast-roku-sonos-dns-rebinding-vulnerability/.

[51] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 19th ACM SIGSAC conference on Computer and Communica-
tions Security (CCS). 736–747.

[52] Evan Niu. 2018. Roku Is Beefing Up Ad Targeting in a Big Way. (2018).
Retrieved August 25, 2019 from https://www.fool.com/investing/2018/06/27/
roku-is-beefing-up-ad-targeting-in-a-big-way.aspx

[53] Lukasz Olejnik. 2017. Stealing sensitive browser data with the
W3C Ambient Light Sensor API. https://blog.lukaszolejnik.com/
stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/.

13

https://www.amazon.com/Fire-TV-Apps-All-Models/b?ie=UTF8&node=10208590011
https://www.amazon.com/Fire-TV-Apps-All-Models/b?ie=UTF8&node=10208590011
https://developer.amazon.com/docs/fire-tv/advertising-id.html
https://www.amazon.com/dp/B0791TX5P5?ref=ODS_v2_FS_SMP_TVStick
https://www.amazon.com/dp/B0791TX5P5?ref=ODS_v2_FS_SMP_TVStick
https://tools.ietf.org/html/rfc3546#section-3.1
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://www.comscore.com/ita/Public-Relations/Blog/Roku-Leads-OTT-Streaming-Devices-in-Household-Market-Share
https://www.comscore.com/ita/Public-Relations/Blog/Roku-Leads-OTT-Streaming-Devices-in-Household-Market-Share
https://tools.ietf.org/html/rfc5280
https://doi.org/10.1145/3243734.3243860
https://disconnect.me/
https://disconnect.me/
https://easylist.to/
https://easylist.to/tag/easyprivacy.html
https://www.emarketer.com/Chart/US-Connected-TV-Users-by-Brand-2018-2022-of-connected-TV-users/220767
https://www.emarketer.com/Chart/US-Connected-TV-Users-by-Brand-2018-2022-of-connected-TV-users/220767
https://www.businessinsider.com/roku-is-winning-the-connected-tv-race-ahead-of-amazon-2018-7
https://www.businessinsider.com/roku-is-winning-the-connected-tv-race-ahead-of-amazon-2018-7
https://www.aaaa.org/wp-content/uploads/2017/07/ComScore-State-of-OTT.pdf
https://www.aaaa.org/wp-content/uploads/2017/07/ComScore-State-of-OTT.pdf
https://publicsuffix.org/
https://www.frida.re/
https://www.frida.re/
https://www.ghostery.com/
https://developer.apple.com/documentation/security/preventing_insecure_network_connections
https://developer.apple.com/documentation/security/preventing_insecure_network_connections
https://www.proofpoint.com/us/threat-insight/post/home-routers-under-attack-malvertising-windows-android-devices
https://www.proofpoint.com/us/threat-insight/post/home-routers-under-attack-malvertising-windows-android-devices
https://samy.pl/evercookie/
https://www.fool.com/investing/2018/03/26/rokus-advertising-revenue-will-surpass-its-player.aspx
https://www.fool.com/investing/2018/03/26/rokus-advertising-revenue-will-surpass-its-player.aspx
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://www.dial-multiscreen.org/
https://www.wired.com/story/chromecast-roku-sonos-dns-rebinding-vulnerability/
https://www.wired.com/story/chromecast-roku-sonos-dns-rebinding-vulnerability/
https://www.fool.com/investing/2018/06/27/roku-is-beefing-up-ad-targeting-in-a-big-way.aspx
https://www.fool.com/investing/2018/06/27/roku-is-beefing-up-ad-targeting-in-a-big-way.aspx
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/

(2017).
[54] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. 2015. The

leaking battery A privacy analysis of the HTML5 Battery Status API. In Interna-
tional Workshop on Data Privacy Management. 254–263.

[55] Open Web Application Security Project (OWASP). 2019. Certificate and Public
Key Pinning. (2019). Retrieved August 25, 2019 from https://www.owasp.org/
index.php/Certificate_and_Public_Key_Pinning

[56] Nilay Pate. 2019. Taking the smarts out of smart TVs
would make them more expensive. (2019). Retrieved Au-
gust 25, 2019 from https://www.theverge.com/2019/1/7/18172397/
airplay-2-homekit-vizio-tv-bill-baxter-interview-vergecast-ces-2019

[57] Pi-hole®. 2019. Pi-hole®: A black hole for Internet advertisements. (2019).
https://pi-hole.net/.

[58] Andrey Popov. 2015. RFC 7465: Prohibiting RC4 cipher suites. Technical Report.
https://tools.ietf.org/html/rfc7465

[59] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Mark Allman, and Christian Kreibich Phillipa Gill. 2018. Apps,
Trackers, Privacy, and Regulators. (2018).

[60] FTC Press Releases. 2017. VIZIO to Pay $2.2 Million to FTC, State of New Jersey
to Settle Charges It Collected Viewing Histories on 11 Million Smart Televisions
without Users’ Consent. (2017).

[61] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.
2016. ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic.
In Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 361–374.

[62] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas Raza-
ghpanah, Narseo Vallina-Rodriguez, and Serge Egelman. 2018. “Won’t Somebody
Think of the Children?” Examining COPPA Compliance at Scale. Proceedings on
Privacy Enhancing Technologies 2018, 3 (2018), 63–83.

[63] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and
Defending Against Third-Party Tracking on the Web. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation. USENIX
Association, 12–12.

[64] Roku. 2019. Developers Documentation. (2019). Retrieved August 25,
2019 from https://developer.roku.com/docs/references/brightscript/interfaces/
ifdeviceinfo.md#getrida-as-dynamic

[65] Roku. 2019. External Control Protocol (ECP). (2019). Retrieved August
25, 2019 from https://developer.roku.com/docs/developer-program/discovery/
external-control-api.md

[66] Roku. 2019. Integrating the Roku Advertising Framework. (2019). Retrieved
August 25, 2019 from https://developer.roku.com/docs/developer-program/
advertising/integrating-roku-advertising-framework.md

[67] Roku. 2019. Roku Channel Store. (2019). Retrieved August 25, 2019 from
https://channelstore.roku.com/browse

[68] Roku. 2019. Roku Compliance. (2019). Retrieved August 25, 2019 from https:
//developer.roku.com/develop/platform-features/compliance

[69] Roku. 2019. Roku Express. (2019). Retrieved August 25, 2019 from https://www.
roku.com/products/roku-express

[70] Elias Saba. 2019. Amazon Fire TV Stick 2 has been Rooted for the first
time. (2019). Retrieved August 25, 2019 from http://www.aftvnews.com/
amazon-fire-tv-stick-2-has-been-rooted-for-the-first-time/

[71] Selenium. 2019. Selenium - Web Browser Automation. (2019). Retrieved August
25, 2019 from https://www.seleniumhq.org/

[72] Sensepost. 2019. sensepost/objection. (Apr 2019). https://github.com/sensepost/
objection

[73] Mike Shields. 2018. Inside Roku’s battle to control the future of TV advertising —
and why it better watch out for Amazon. (2018). Retrieved August 25, 2019 from
https://www.businessinsider.com/roku-wants-to-control-the-future-of-tv-ads

[74] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and Chris Jay
Hoofnagle. 2010. Flash cookies and privacy. In 2010 AAAI Spring Symposium
Series.

[75] Sid Stamm, Zulfikar Ramzan, and Markus Jakobsson. 2007. Drive-by pharming.
In International Conference on Information and Communications Security. Springer,
495–506.

[76] Oleksii Starov and Nick Nikiforakis. 2017. Extended Tracking Powers: Measuring
the Privacy Diffusion Enabled by Browser Extensions. In Proceedings of the 26th
International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1481–1490.

[77] Brett Tingley. 2018. Over One Third of US Households Will Cut the Cord by
2020. (2018). Retrieved August 25, 2019 from https://www.streamingobserver.
com/over-one-third-of-us-households-will-cut-the-cord-by-2020/

[78] Amazon Fire TV. 2019. Remote Control Input. (2019). Retrieved August 25, 2019
from https://developer.amazon.com/docs/fire-tv/remote-input.html

[79] Daniel Veditz. 2011. Rizzo/Duong chosen plaintext attack (BEAST) on SSL/TLS 1.0
(facilitated by websockets -76). Technical Report. https://bugzilla.mozilla.org/
show_bug.cgi?id=665814

[80] WiGLE.net. 2019. WiGLE: Wireless Network Mapping. (2019). Retrieved August
25, 2019 from https://wigle.net/

[81] Daniel Wood, Noah Apthorpe, and Nick Feamster. 2017. Cleartext data transmis-
sions in consumer iot medical devices. In Proceedings of the 2017 Workshop on
Internet of Things Security and Privacy. ACM, 7–12.

[82] Ning Xia, Han Hee Song, Yong Liao, Marios Iliofotou, Antonio Nucci, Zhi-Li
Zhang, and Aleksandar Kuzmanovic. 2013. Mosaic: Quantifying Privacy Leakage
in Mobile Networks. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM (SIGCOMM ’13). ACM, New York, NY, USA, 279–290. https://doi.org/
10.1145/2486001.2486008

A TLS INTERCEPTION SETTINGS
A.1 TLS Interception Certificate
When we cannot deploy our own certificate to the device, our TLS
interception rate is bounded by the number of channels with incor-
rect validation of certificates. We compared the success rate of TLS
interception using two different X.509 certificates on Roku. First,
a self-signed certificate generated by mitmproxy with a common
name matching the original certificate’s common name was used.
If a channel does not validate the chain of certificate authorities
(CAs), the client will complete the TLS handshake using this cer-
tificate and proceed with the communication. Second, a certificate
issued by Let’s Encrypt9 for a domain we own (“3016sale.xyz”)
was tried. In this case, the channel proceeds with the connection
if it does not validate the fields “Subject” or “Subject Alternative
Name” in the certificate [9]. Using the self-signed certificate, we
attempted intercepting sessions on top 100 channels on Roku. We
were able to intercept 12 distinct hosts from 9 channels using this
certificate; whereas, interception was successful only on 5 distinct
hosts from 4 channels with the Let’s Encrypt certificate. Thus, we
use the self-signed certificate for larger crawls.

A.2 TLS Interception Learning Rate
To measure how fast our TLS interception learns new endpoints
that cannot be intercepted and adds them to the no-intercept list, we
measure the number of endpoints where we attempted to intercept
the TLS connection but failed for each warm-up launch of a channel.
The resulting histogram is shown in Figure 6 and Figure 7 shows
the corresponding CDF.

1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20
Launch number

0

50

100

150

200

250

300

350

Nu
m

be
r o

f T
LS

 fa
ilu

re
s

Figure 6:Number of TLS failures in eachwarm-up launch
for Roku platform.

9https://letsencrypt.org/
14

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.theverge.com/2019/1/7/18172397/airplay-2-homekit-vizio-tv-bill-baxter-interview-vergecast-ces-2019
https://www.theverge.com/2019/1/7/18172397/airplay-2-homekit-vizio-tv-bill-baxter-interview-vergecast-ces-2019
https://pi-hole.net/
https://tools.ietf.org/html/rfc7465
https://developer.roku.com/docs/references/brightscript/interfaces/ifdeviceinfo.md#getrida-as-dynamic
https://developer.roku.com/docs/references/brightscript/interfaces/ifdeviceinfo.md#getrida-as-dynamic
https://developer.roku.com/docs/developer-program/discovery/external-control-api.md
https://developer.roku.com/docs/developer-program/discovery/external-control-api.md
https://developer.roku.com/docs/developer-program/advertising/integrating-roku-advertising-framework.md
https://developer.roku.com/docs/developer-program/advertising/integrating-roku-advertising-framework.md
https://channelstore.roku.com/browse
https://developer.roku.com/develop/platform-features/compliance
https://developer.roku.com/develop/platform-features/compliance
https://www.roku.com/products/roku-express
https://www.roku.com/products/roku-express
http://www.aftvnews.com/amazon-fire-tv-stick-2-has-been-rooted-for-the-first-time/
http://www.aftvnews.com/amazon-fire-tv-stick-2-has-been-rooted-for-the-first-time/
https://www.seleniumhq.org/
https://github.com/sensepost/objection
https://github.com/sensepost/objection
https://www.businessinsider.com/roku-wants-to-control-the-future-of-tv-ads
https://www.streamingobserver.com/over-one-third-of-us-households-will-cut-the-cord-by-2020/
https://www.streamingobserver.com/over-one-third-of-us-households-will-cut-the-cord-by-2020/
https://developer.amazon.com/docs/fire-tv/remote-input.html
https://bugzilla.mozilla.org/show_bug.cgi?id=665814
https://bugzilla.mozilla.org/show_bug.cgi?id=665814
https://wigle.net/
https://doi.org/10.1145/2486001.2486008
https://doi.org/10.1145/2486001.2486008

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Launch number

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: CDF of TLS failures in each warm-up launch.
Launches up to ten do not feature any interaction with
the channel; launches after ten include smart crawls.

B BYPASSING TLS CERTIFICATE PINNING
In order to bypass application level certificate pinning for all of
the running applications, we built a script which uses the Frida
toolkit [29]. On initialization, the script collects all of the running
processes and uses Objection [72] to generate an API port linked
to each process. We then send a POST request to the Objection API
instructing it to send the Universal Android SSL Pinning Bypass
gadget [7] to the Frida server on the Fire TV as can be seen in
Figure 8.

A listener is also spawned which monitors the “ActivityManager”
process in Android using “adb logcat" which allows us to detect
any new processes which spawn and create an Objection instance
for them. Once the Objection instance is spawned we use a POST
request as explained above to instruct Objection to send the gadget
to Frida. The operation on the watchdog can be seen in Figure 8.

To prevent the system from crashing if a process is incompatible
with the Frida gadget, we maintain a blacklist of processes. A pro-
cess is added to the blacklist if Frida returns an error code while
trying to insert the gadget or if an app crashes within ten seconds
of a gadget being injected after two attempts are made.

C OTT SPECIFIC TRACKING DOMAINS
We list the domains that we found to engage in advertising and
tracking in OTT services and not listed in previous work in Table 11.

D WEAK TLS CIPHERSUITES
Method. Using the pcaps from the Roku-Top1K-NoMITM and

FireTV-Top1K-NoMITM crawls we extracted all TLS Client Hello
messages that the OTT device sent. From these Client Hello mes-
sages, we extracted the non-ephemeral parameters: the TLS hand-
shake version, along with a list of ciphers, extensions, compression
methods, elliptical curves (supported groups), EC point formats, and
signature algorithms. We concatenated these parameters — while
preserving the order of all the lists — and generated a SHA-256
hash as a fingerprint for the Client Hello message.

com.example.tv 8082

Initialization

adb

Start Frida Server

frida

Retrieve Running Processes

Spawn
Objection

com.example.tv 8080
com.channel.tv 8081

curl 127.0.0.1:8080/sslPinningDisable
curl 127.0.0.1:8081/sslPinningDisable

SSL Gadget

Watchdog

adb

logcat Listener

frida
Spawn Objection

SSL Gadget

curl Request

ActivityManager:
com.example.tv started

curl Request

Figure 8: Frida script pipeline.

Domain Channel Count
monarchads.com 74
ewscloud.com 31
kargo.com 25
adrise.tv 18
aragoncreek.com 7
lightcast.com 7
mtvnservices.com 7
myspotlight.tv 6
brightline.tv 3
junctiontv.net 2

Table 11: Domains that collect AD ID and are not blocked by
the five adblocking lists in Roku-Top1K-MITM crawl.

We use Client Hello fingerprints to identify potentially the same
TLS implementations and configurations. In other words, if two
channels send out Client Hello messages with the same fingerprints,
the channels are likely to have used the same TLS libraries and set-
tings. A Client Hello fingerprint associated with insecure settings,
such as using outdated TLS versions or advertising weak ciphers
(e.g., RC4), implies that all channels with this fingerprint are likely
affected.

Roku Result. Across the 1,000 Roku channels, we identify 16 dis-
tinct fingerprints. Multiple fingerprints may be associated with the
same channel. On average, a channel is associated with 3.00±0.19
distinct fingerprints. Two of the 16 fingerprints appear in all 1,000
channels, and one fingerprint appears in 991 channels. This obser-
vation suggests that the majority of the channels use some standard
TLS implementations provided by the platform. One of these fin-
gerprints which appears in all 1,000 channels advertises RC4 as one
of its supported ciphers. Even though no RC4 ciphers were actually
used (i.e., because the Server Hello picked a non-RC4 cipher), the
presence of RC4 ciphers may still face potential vulnerabilities. In
particular, past years have seen multiple attacks that targeted RC4,
and in February 2015, RFC 7465 prohibits the use of RC4 in TLS [58].

15

Additionally, there is also a long tail of fingerprints that appear
in a small number of channels. Three fingerprints each appear in
two different channels, and another 10 fingerprints each appear
in exactly one channel. This long tail of fingerprints suggests the
use of custom TLS implementations and/or configurations in chan-
nels. Of the ten single-channel fingerprints, five of them advertise
the RC4 cipher across three channels: Sling TV (ranked #6), Vudu
(ranked #17), and Spotify Music (ranked #25). Furthermore, two of
these ten single-channel fingerprints use TLS 1.0: Amazon Prime
Video (ranked #3) and Vudu — whereas all other fingerprints in our
dataset use TLS 1.2. Researchers have shown in the past that TLS 1.0
can potentially be subject to attacks such as BEAST [79]. Amazon
Prime Video, for instance, communicated with amazon.com and
amazonvideo.com over TLS 1.0 using this particular fingerprint,
although the channel also uses four other fingerprints — all over
TLS 1.2 — to communicate with Amazon, Roku, and other services.

Amazon Result. Across the 1,000 channels, we identify 203 dis-
tinct fingerprints. One fingerprint appears in all 1,000 channels,
followed by a fingerprint in 797 channels and another fingerprint
in 774 channels. These top three fingerprints advertise the RC4
cipher and they use TLS 1.2. The fingerprint that is used in the
most number of channels and which negotiates TLS 1.0 appears
in 49 channels. In all cases, these 49 channels communicate with
amazonvideo.com using this fingerprint. A total of 67 channels use
fingerprints that are not used in other channels, which suggest ei-
ther (i) the channels use custom implementations or configurations
of the TLS library, or (ii) channels use random parameters in the
Client Hello, which appears as multiple fingerprints even though
only one TLS implementation/configuration is used. Unfortunately,
we are unable to distinguish these two cases.

E TRACKER DOMAINS MISSED BY PI-HOLE

Domain Channel Count
tremorhub.com 66
irchan.com 42
bfmio.com 41
monarchads.com 38
adrise.tv 15
digitru.st 12
bidswitch.net 12
sharethrough.com 9
adsrvr.org 6
lightcast.com 6

Table 12: Domains that receive AD ID and Serial number af-
ter filtering requests with Pi-hole (Roku-Top1K-MITM)

F FIRE TV REMOTE API
The Fire TV remote control app uses a version of the Discovery and
Launch (DIAL) protocol [49] to locate the Fire TV on the network.
Once the Fire TV’s IP is located, the app queries a web server
running on the Fire TV which returns the device’s name along with
a secure and insecure port to continue communicating on. The
remote control continues the communication on the secure port
using TLS by default.

In order to authenticate new clients, the Fire TV prompts the
user to enter a code displayed on the TV within the app. The app
uses this to generate an authentication key which is included with
all the future requests the remote sends to the TV. The remote
control app does not verify the TLS certificate the server provides
which allowed us to recover the authentication key using a man
in the middle attack. Once the authentication key is recovered, an
attacker can forge remote control interactions using POST requests
to either the insecure or secure port on the Fire TV’s web server.
This allows the attacker to install and uninstall channels, change
channels, and retrieve device information. However, we believe this
is not a practical attack since the attacker would need to be on the
local network in order to perform the man in the middle attack and
recover the authentication key.

G VIDEO TITLE LEAKS
The following tables summarize our video title leak detection results
(for a subset of channels).

16

Channel Name Video Title Tracking Domain
Newsy Newsy’s Latest Headlines google-analytics.com
WCJB TV-20 News Lets Go with Livestream scorecardresearch.com
CBS News CBSN Live Video scorecardresearch.com
1011 News Live Newscasts scorecardresearch.com
WEAU News Live Newscasts scorecardresearch.com
FilmRise Kids Barnum spotxchange.com
KJRH 2 Works for You Tulsa Sunday Night Forecast google-analytics.com
News 5 Cleveland WEWS Freddie Kitchens makes surprise appearance google-analytics.com
NewsChannel 5 Nashville WTVF Live: NewsChannel 5 This Morning at 4 google-analytics.com

Table 13: Title leaks in 100 random Roku channels from the Roku-Top1K-MITM crawl.

Channel Name Video Title Tracking Domain
KSAT TV KSAT-TV Livestream google-analytics.com
WRAL Severe storms batter central U.S. scorecardresearch.com
WRAL Severe storms batter central U.S. google-analytics.com
Yuyu - Movies & TV Mood Indigo spotxchange.com
WTMJ TODAY’s TMJ4 Milwaukee Partly cloudy, cool Saturday google-analytics.com
Hillsong Channel NOW The Jesus Trek litix.io
KJRH 2 Works For You Tulsa In the Kitchen with Fireside Grill: Caribbean Jerk Chicken google-analytics.com
WPTV NewsChannel 5 West Palm To The Point google-analytics.com
WKBW 7 Eyewitness News Buffalo Graffiti Patio officially opens at Tappo Pizza google-analytics.com
NBC News TODAY’s Headlines omtrdc.net
NBC News TODAY’s Headlines google-analytics.com
Popcornflix Kids The Tuxedo google-analytics.com
Popcornflix Kids The Tuxedo youboranqs01.com
Cooking Channel Raising the Heat conviva.com
Cooking Channel raising the heat google-analytics.com
Travel Channel The Dead Files conviva.com
Travel Channel the dead files google-analytics.com
PopcornflixTM- Movies.TV.Free Planes Trains and Automobiles youboranqs01.com
PopcornflixTM- Movies.TV.Free Planes Trains and Automobiles google-analytics.com
Pluto TV - It’s Free TV The Adventures of Tintin youboranqs01.com

Table 14: Title leaks in 100 random Fire TV channels from the FireTV-Top1K-MITM crawl.

17

	Abstract
	1 Introduction
	2 Related Work and Background
	2.1 Related Work
	2.2 Platforms and Channel Stores

	3 Smart Crawler and Data Collection
	3.1 Compiling Channel Lists
	3.2 Smart Crawler Infrastructure
	3.3 List of Crawls

	4 Processing Crawl Data
	4.1 Data Files
	4.2 Data Processing

	5 Findings
	5.1 Data and Crawl Overview
	5.2 Tracker prevalence
	5.3 Identifier and Information Leakage
	5.4 Effect of countermeasures
	5.5 Network Connection Security
	5.6 Remote Control API Vulnerabilities

	6 Discussion
	6.1 Recommendations
	6.2 Limitations and Future Work

	7 Conclusion
	8 Acknowledgements
	References
	A TLS Interception Settings
	A.1 TLS Interception Certificate
	A.2 TLS Interception Learning Rate

	B Bypassing TLS Certificate Pinning
	C OTT Specific Tracking Domains
	D Weak TLS Ciphersuites
	E Tracker domains missed by Pi-hole
	F Fire TV Remote API
	G Video title leaks

